

Operon Documentation

	Getting Started

	Using Operon
	Initialization

	Pipeline Installation

	Pipeline Configuration

	Seeing Pipeline States

	Run a Pipeline

	Run a Pipeline in Batch

	Command Line Help

	Building Pipelines
	Dependency Workflow Concepts

	Pipeline Meta Definitions

	Pipeline Logic

	Pipeline Logging

	Developer Tutorial
	description(self)

	dependencies(self)

	conda(self)

	arguments(self, parser)

	configuration(self)

	pipeline(self, pipeline_args, pipeline_config)

	Running the Tutorial Pipeline

	Operon API

	Changelog
	v0.1.8 (released 29 August 2018)

	v0.1.5 (released 7 June 2018)

	v0.1.2 (released 21 Feb 2018)

	v0.1.1 (released Jan 2018)

Parsl

Operon is powered by Parsl. To get an understanding of how to most efficiently run Operon pipelines, check out the
Parsl documentation [http://parsl.readthedocs.io/en/latest/].

Getting Started

To install with pip:

$ pip install operon

Or to get the latest development version:

$ pip install git+https://github.com/djf604/operon@dev

Note

Parsl requires Python 3.5+, so Operon does too

Operon keeps track of pipelines and configurations automatically in a hidden directory. Before Operon can be used,
this directory needs to be initialized with the command:

$ operon init

To install a pipeline:

$ operon install /path/to/pipeline.py

To configure the pipeline and optionally install software:

$ operon configure <pipeline-name>

To run the pipeline:

$ operon run <pipeline-name>

Using Operon

The primary user interaction with Operon is through the command line interface, exposed as the executable operon.
Subcommands are provided to install, manage, and run pipelines compatible with the Operon framework.

Initialization

Operon keeps track of pipelines and configurations, among other metadata, in a hidden directory. Before Operon can be
used, this directory structure needs to be initialized:

$ operon init [init-path]

Where init-path is an optional path pointing to the location where the hidden .operon folder should be
initialized. If this path isn’t given it will default to the user’s home directory.

By default, whenever Operon needs to access the .operon folder it will look in the user’s home directory. If the
.operon folder has been initialized elsewhere, there must be a shell environment variable OPERON_HOME which
points to the directory containing the .operon folder.

Note

If a path other than the user’s home directory is given to the init subprogram, it will attempt to add the
OPERON_HOME environment variable to the user’s shell session in ~/.bashrc, ~/.bash_profile, or
~/.profile.

After a successful initialization, a new shell session should be started for tab-completion and the OPERON_HOME
environment variable to take effect.

Pipeline Installation

To install an Operon compatible pipeline into the Operon system:

$ operon install /path/to/pipeline.py [-y]

The pipeline file will be copied into the Operon system and optionally Python package dependencies, as specified by
the pipeline just installed, can be installed into the current Python environment using pip.

Caution

If install attempts to install Python package dependencies, it will attempt to do so using the --upgrade
flag to pip. If in the current Python environment those packages already exist, they will be either upgraded
or downgraded, which may cause other software to stop functioning properly.

Pipeline Configuration

To configure an Operon pipeline with platform-static values and optionally use Miniconda to install software
executables that the pipeline uses:

$ operon configure <pipeline-name> [-h] [--location LOCATION] [--blank]

If this is the first time the pipeline has been configured and Miniconda is found in PATH, then the configure
subprogram will attempt to create a new conda environment, install software instances that the pipeline uses, then
inject those software paths into the next configuration step. If a conda environment for this pipeline has been
created before, configure can attempt to inject those software paths instead.

For the configuration step, Operon will ask the user to provide values for the pipeline which will not change from
run to run such as software paths, paths to reference files, etc. The question is followed by a value in brackets
([]), which is the used value if no input is provided. If a conda environment is used, this value in brackets will
be the injected software path.

By default, the configuration file is written into the .operon folder where it will automatically be called up
when the user runs operon run. If --location is given as a path, the configuration file will be written
out there instead.

Seeing Pipeline States

To see all pipelines in the Operon system and whether each has a corresponding configuration file:

$ operon list

To see detailed information about a particular pipeline, such as current configuration, command line options, any
required dependencies, etc:

$ operon show <pipeline-name>

Run a Pipeline

To run an installed pipeline:

$ operon run <pipeline-name> [--pipeline-config CONFIG] [--parsl-config CONFIG] \
 [--logs-dir DIR] [pipeline-options]

The set of accepted pipeline-options is defined by the pipeline itself and are meant to be values that change from
run to run, such as input files, metadata, etc. Three options will always exist:

	--pipeline-config can point to a pipeline config to use for this run only

	--parsl-config can point to a Python file that represents a Parsl config to use for this run only (see below)

	--logs-dir can point to a location where log files from this run should be deposited; if it doesn’t exist, it
will be created; defaults to the current directory

	--run-name gives a name to the run, which will be used in the log filename and helps differentiate this run from
other runs

When an Operon pipeline is run, under the hood it creates a Parsl workflow which can be exectuted in different ways
depending on the accompanying Parsl configuration. This means that while the definition for a pipeline run with the
run subprogram is consistent, the actual execution model may vary if the Parsl configuration varies.

Parsl Configuration

Parsl is the package the powers Operon and and is responsible for Operon’s powerful and flexible parallel execution.
Operon itself is only a front-end abstraction of a Parsl workflow; the actual execution model is fully
Parsl-specific and as such it’s advised to check out the
Parsl documentation [http://parsl.readthedocs.io/en/latest/]
to get a sense for how to design a Parsl configuration for a specific need-case.

The Parsl configuration must be specified in a Python file where the variable name config contains an object of
type parsl.config.Config:

from parsl.config import Config

config = Config(
 executors=[...],
 lazy_errors=True,
 retries=10
)

The run subprogram attempts to pull a Parsl configuration from the user in the following order:

	A path from the command line argument --parsl-config

	A path from the pipeline configuration key parsl_config

	A package default Parsl configuration of 2 workers using Python threads

The Parsl configuration can contain multiple executors, each with different models of execution and different available
resources. If a multiexecutor Parsl configuration is provided to Operon, it will try to match up the executor names as best as
possible and execute software on appropriate sites. Any software which can’t find a Parsl configuration executor match will
run in a random executor. The set of executor names the pipeline expects is output as a part of operon show.

For more detailed information, refer to the
Parsl documentation [http://parsl.readthedocs.io/en/latest/userguide/configuring.html] on the subject.

Run a Pipeline in Batch

A common use case is to run many samples or input units independently through the same pipeline. The batch-run
subcommand allows this use case and gives the whole run a common pool of resouces:

$ operon batch-run <pipeline-name> --input-matrix INPUT_MATRIX [--pipeline-config CONFIG] \
 [--parsl-config CONFIG] [--logs-dir DIR]

Operon treats a batch-run like a single large workflow which happens to contains many disjoint sub-workflows. Every
node in the workflow graph is given equal access to a pool of resources so those resources are used most efficiently.

Input Matrix

Passing inputs into a batch-run isn’t done on the command line but rather is pre-gathered into a tab-separated
matrix file of a specific format. The following formats are supported:

With Headers

The header line should be a tab separated list of command line argument flags in the same format as one would use when
directly typing on the command line. Optional arguments should use their verbatim flags, and positional arguments
should use the form positional_i, where i is the position from left-most to right-most. Subsequent lines
should have the same number of tab separated items, where each item is the value for its corresponding header.

Singleton arguments (where its presence or lack thereof denotes its value) can be specified in their affirmative form
in the header line. The values given should be either true or false, which corresponds to whether they should
be included or not.

--arg1 --inputs --singleton positional_0 positional_1
val1 /path/to/input1 true apples blue
val3 /path/to/inputN true strawberries green
val2 /path/to/inputABB false kale purple

Note

If the literal string "true" or "false" is needed, preface with a # as in #true.

Without Headers

If the flag --literal-input is given to batch-run, then the header line does not need to exist and each line
is taken as a literal command line string which will be interpreted as if typed directly into the command line
(starting with arguments to the pipeline).

--arg1 val1 --inputs /path/to/input1 --singleton apples blue
--arg1 val3 --inputs /path/to/inputN --singleton strawberries green
--arg1 val2 --inputs /path/to/inputABB kale purple

Command Line Help

All subcommands can be followed by a -h, --help, or help to get a more detailed explanation for how it
should be used.

Building Pipelines

Dependency Workflow Concepts

Operon pipelines don’t actually run anything at all; instead, they define a workflow. Parsl then uses the defined
workflow to run the pipeline in a highly-efficient and configuration manner. Operon simply acts as an abstraction to
Parsl so the developer need only what about what software needs to be run, and at what point in the pipeline it
has all the information it needs to run successfully.

There are two main components to a dependency workflow graph:

	Executables

	Data

Executables generally take input, perform some computational work on that input, then produce some output. Data is any
file on disk that is used as input or produced as output and that needs to be considered in the workflow graph.

When building a pipeline in Operon, the connections between Executables and Data need not be a part of the design
process. The developer needs only to define Executables which are a part of the workflow, and the input and/or output
files for each Executable. At runtime, Operon will examine the dependency workflow graph and feed the connections
appropriately into Parsl.

As an example, consider the following scenario in a bioinformatics workflow : a FASTQ file is used as input to an
aligner (say, bwa), which produces a BAM file. That produced BAM file needs to be used as input to two programs, one
to gather flagstats and one to quantify gene counts. The dependency workflow graph would look as follows:

[image: _images/flowchart.svg]

The developer for this pipeline only needs to define the following:

	There’s a program called bwa, which lives at /path/to/bwa. As input, it takes in a file located at
/path/to/fastq, and as output it generates a file called /path/to/bam.

	There’s a program called samtools, which lives at /path/to/samtools. As input, it takes in a file located at
/path/to/bam, and as output it generates a file called /path/to/flagstats.

	There’s a program called genecounter, which lives at /path/to/genecounter. As input, it takes in a file located
at /path/to/bam, and as output it generates a file called /path/to/genecounts.

This defines three Software instances (Apps in Parsl verbage): bwa, samtools, and genecounter. All three Software
instances have data dependencies; that is, they are require input data to run. However, two of the Software instances’
data dependencies are not yet available (because they haven’t been produced by the pipeline yet), so they will not
run until those dependencies become available. The Software bwa, however, has all of its data dependencies available,
so it begins running immediately. Once bwa is finished running, and consequently produces its output /path/to/bam,
the Software samtools and genecounter both recognize that their data dependencies are now available, and so both
begin running concurrently.

Note

/path/to/fastq, /path/to/bwa, etc are placeholders in the above example. In a real pipeline, the
developer would gather those values either from the command line via pipeline_args or from the configuration
via pipeline_config. As long as Data() inputs and outputs resolve to filesystem paths at the time of
workflow generation, Parsl will be able to correctly determine data dependencies.

Pipeline Meta Definitions

Pipeline meta definitions describe how the pipeline should be installed, provisioned, and configured so that as little
as possible needs to be done by the user before the pipeline is ready to run on the user’s platform.

All pipeline meta definitions (and logic, for that matter) is defined in a single document with a single class, always
called Pipeline, which subclasses operon.components.ParslPipeline.

from operon.components import ParslPipeline

class Pipeline(ParslPipeline):
 def description(self):
 return 'An example pipeline'

 ...

 def pipeline(self, pipeline_args, pipeline_config):
 # Pipeline logic here

Description

The description of the pipeline is a string meant to be a human readable overview of what the pipeline does and any
other relevant information for the user.

def description(self):
 return 'An example pipeline, written in Operon, powered by Parsl'

The pipeline description is displayed when the user runs operon show.

Dependencies

Pipeline dependencies are Python packages which the pipeline logic use. Dependencies are provided as a list of strings,
where each string is the name of a package available on PyPI and suitable to be feed directly into pip.

def dependencies(self):
 return [
 'pysam==0.13',
 'pyvcf'
]

Upon pipeline installation, the user is given the option to use pip to install dependencies into their current
Python environment. While this may be convenient, it may also cause package collisions or unecessary muddying of a
distribution Python environment, so the user can instead opt to get the dependencies from operon show and install
them manually into a Python virtual environment.

Note

If the user accepts auto-installing dependencies into their current Python environment, pip will attempt to
do so using the --upgrade flag. This may upgrade or downgrade packages already installed in the current
Python environment if there are any collisions.

Conda/Bioconda

Executables provided by Conda/Bioconda can be installed and injected into the user’s pipeline configuration, provided
the user has Miniconda installed and in PATH. Executables are defined by a list of CondaPackage tuples, with the
option to override the default conda channels that Operon loads.

from operon.components import CondaPackage

def conda(self):
 return {
 'channels': ['overriding', 'channels', 'here'],
 'packages': [
 CondaPackage(tag='star=2.4.2a', config_key='STAR', executable_path='bin/STAR'),
 CondaPackage(tag='picard', config_key='picard', executable_path='share/picard-2.15.0-0/picard.jar')
]
 }

If provided, channels will be loaded by Miniconda in list order, which means the last entry has the highest
precedence, the second-highest entry has the second-highest precedence, etc.

A CondaPackage named tuple takes the following keys:

	tag is the name of the executable and optional version number fed directly to Miniconda

	config_key is the outermost key in the pipeline’s configuration(). When this executable is injected into
a user’s pipeline config, it’s placed into pipeline_config[config_key]['path']

	executable_path is only necessary if the basename of the installed executable is different from the conda tag, or
if the developer wishes to use an executable outside conda’s default bin folder. Some examples:

	The conda package star=2.4.2a is installed as STAR, so executable_path= must be set to bin/STAR

	The conda package picard installs an executable into bin, but if the developer wishes to access the
jar file directly, she must set executable_path= to share/picard-2.15.0-0/picard.jar

	The conda package bwa installs an executable into bin called bwa, so executable_path does not
need to be set

To see which executables are offered by Bioconda, please refer to their package index [https://bioconda.github.io/recipes.html].

Pipeline Configuration

The pipeline configuration contains attributes passed into the pipeline logic which may change from platform to
platform, but generally won’t change from run to run. For example, paths to executables for software, paths to
reference files, number of threads to use, etc will vary by platform but will be the same for every run.

def configuration(self):
 return {
 'software1': {
 'path': 'Full path to software1',
 'threads': 'Run software1 with this many threads',
 'threads': {
 'q_type': 'list',
 'message': 'Run software1 with this many threads',
 'choices': ['1', '2', '4', '8', '16'],
 'default': '4'
 }
 },
 'software2': {
 'path': 'Full path to software2',
 'genome_reference': {
 'q_type': 'path',
 'message': 'Path to genome reference'
 }
 }
 }

The returned configuration dictionary may nest arbitrarily deep. All values must be either a dictionary or a string.
Considering the configuration dictionary as a tree, there are two types of leaves: a string or a dictionary which
configures a question to the user. During configuration of the pipeline using operon configure, the user is
presented with a prompt for each leaf, and the user input is gathered and stored in place of the prompt string.

Note

The nesting of dictionaries inside the configuration dictionary is purely for the developer’s organizational
convenience; the user will never see anything but prompts defined by the string values.

If the order of prompts is important, return a collections.OrderedDict instance.

For a string leaf, the question type defaults to a Text question, where the prompt presented is the string itself. The
exception to this is if the word path is found in the most immediate key, the question type will default to
Path.

For a dictionary leaf, the question type can be fully configured. For a dictionary to be recognized as a leaf, it must
contain the key q_type, or else it will be interpreted as another level in the nested configuration dictionary. The
following options can be passed to a question configuration:

	q_type must be one of {path, text, confirm, list, checkbox, password}

	message is the prompt displayed to the user

	default is a default value suggested to the user as part of the prompt

	validate is a function which determines whether the user input is valid

	ignore is a function which determines whether to display this question to the user

	choices is a list of choices; only used by the List and Checkbox question types

	always_default if present with any value, will force the default to always be the value defined by the key
default, regardless of whether another value was injected by Operon

The q_type and message keys are required for all question types, while the choices key is additionally
required for List and Checkbox question types. For more information on how each of the question types operate,
please refer to the
inquirer documentation [http://python-inquirer.readthedocs.io/en/latest/usage.html#question-types]
on question types.

For the above example configuration, the user will see and interactively fill in the prompts:

$ operon configure pipeline-name
[?] Full path to software1: (User enters) /path/to/soft1
[?] Run software1 with this many threads: (User selects) 8
 1
 2
 4
 > 8
 16

[?] Full path to software2: (User enters) /path/to/soft2
[?] Path to genome reference: (User enters) /path/to/genome

The input from the user is stored in the .operon folder, so the next time the pipeline is run with this
configuration it will be made available in the pipeline_config parameter:

Contents of pipeline_config
{
 'software1': {
 'path': '/path/to/soft1',
 'threads': '8'
 },
 'software2': {
 'path': '/path/to/soft2',
 'genome_reference': '/path/to/genome'
 }
}

So for any software which needs access to a genome reference, the path can be passed to the software as
pipeline_config['software2']['genome_reference'].

Pipeline Arguments

The pipeline arguments are attributes that will change from run to run and are specified by the user as command line
arguments on a per-run basis. Pipeline arguments are added by modifying the argparse.ArgumentParser object passed
into self.arguments(); refer to the documentation [https://docs.python.org/3/library/argparse.html] for
argparse for futher details on how pipeline arguments can be gathered.

def arguments(self, parser):
 parser.add_argument('--output-dir', help='Path to output directory')
 parser.add_argument('--fastqs', nargs='*', help='Paths to all input fastq files')
 parser.add_argument('--run-name', default='run001', help='Name of this run')
 # Nothing needs to be returned since parser is modified in place

Added arguments are exposed to the user when running operon run, according to the rules of the argparse module.

$ operon run pipeline -h
> operon run pipeline [-h] [--output-dir OUTPUT_DIR] [--fastqs [FASTQS [FASTQS ...]]]
> [--run-name RUN_NAME]
>
> Pipeline description is here
>
> optional arguments:
> -h, --help show this help message and exit
> -c CONFIG, --config CONFIG
> Path to a config file to use for this run.
> --output-dir OUTPUT_DIR
> Path to output directory
> --fastqs [FASTQS [FASTQS ...]]
> Paths to all input fastq files
> --run-name RUN_NAME Name of this run
>
$ operon run pipeline --fastqs /path/to/fastq1.fq /path/to/fastq2.fq \
> --output-dir /path/to/output --run-name run005

Populated arguments are made available to the pipeline as a dictionary in the pipeline_args parameter:

Contents for pipeline_args
{
 'fastqs': ['/path/to/fastq1.fq', '/path/to/fastq2.fq'],
 'output_dir': '/path/to/output',
 'run_name': 'run005'
}

Note

Parameters in argparse can have dashes in them (and should to separate words), but when converted to a Python
dictionary dashes are replaced with underscores.

Ex. --output-dir is accessed by pipeline_args['output_dir']

Three pipeline arguments are always injected by Operon: --pipeline-config, --parsl-config, and --logs-dir.
These arguments point to a pipeline config file to use for the run, a Parsl config file to use for the run, and a
directory in which to store log files, respectively.

Pipeline Logic

Pipeline logic defines how the workflow dependency graph should be built. The work is done in the pipeline()
method, which is given two parameters, pipeline_args and pipeline_config, which are populated at runtime
with command line arguments from the user and the stored pipeline configuration file, respectively.

Executables and data are defined using a set of wrapper objects provided by Operon: this section details those
components and how to use them.

def pipeline(self, pipeline_args, pipeline_config):
 # All logic to build the workflow graph goes here

Note

All the logic here is only to build the workflow dependency graph, which means that none of the executables
are being run and none of the data is being produced until after pipeline() has completed. Parsl only begins
actually running the software after it’s been fed the generated workflow graph.

All statements in the pipeline() method should be for generating the workflow graph, not handling or operating
on data in any way. If needed, small blocks of Python can be written in a CodeBlock instance, which can be
integrated into the workflow graph and so will execute at the correct time.

Data operon.components.Data

A Data instance wraps a file on the filesystem and registers it as a data node in the workflow graph. Any file
that should be considered in the workflow graph needs to be wrapped in a Data instance; often this is only
input or output to an executable, and may not include output like log files.

When passed as an argument to a Parameter object, the data must be specified as either input or output by calling
either the .as_input() or .as_output() method. This distinction is not necessary when passing as a part of
extra_inputs= or extra_outputs= keyword arguments.

Data objects can be marked as temporary, which designates the underlying file on the filesystem to be deleted
at the end of the run, by setting the tmp= parameter to True in .as_output().

from operon.components import Data

bwa.register(
 Parameter('--fastq', Data('/path/to/fastq.fq').as_input()),
 Parameter('--tmp-bam', Data('/path/to/tmp.bam').as_output(tmp=True)),
 Parameter('--persistent-bam', Data('/path/to/persistent.bam').as_output())
)

samtools.register(
 Parameter('--input-bam', Data('/path/to/persistent.bam').as_input())
)

The developer does not need to keep track of individual Data instances because Data instances are uniquely
identified by the filesystem paths they wrap; that is, if a Data instance is created as Data('/path/to/file'),
any subsequent calls to Data('/path/to/file') will not create a new Data instance but rather simply refer to
the instance already created. Of course, the developer could store Data instances in variables and pass those
instead, if desired.

Data instances can be used in-place anywhere a filesystem path would be passed; that includes both Parameter
and Redirect objects.

Meta operon.meta.Meta

The Meta class has a method define_executor() used to give a name to a resource configuration.

from operon.meta import Meta

Meta.define_executor(label='small_site', resources={
 'cpu': '2',
 'mem': '2G'
})

Meta.define_executor(label='large_site', resources={
 'cpu': '8',
 'mem': '50G'
})

The value passed to resources must be a dictionary with the keys cpu and mem as in the above example. The value
of mem should be an integer (as a string) followed by one of M, G, or T.

Software operon.components.Software

A Software instance is an abstraction of an executable program external to the pipeline.

from operon.components import Software

bwa = Software(name='bwa', path='/path/to/bwa')
samtools_flagstat = Software(name='samtools', subprogram='flagstat')
genecounter = Software(name='genecounter', path='/path/to/genecounter')

If the path= parameter isn’t given, Operon will try to infer the path by looking in
pipeline_config[name]['path']. If the path can’t be inferred, a ValueError will be thrown.

To register an Executable node in the workflow graph, call the Software instance’s .register() method.
register() takes any of Parameter, Redirect, Pipe. Keyword arguments extra_inputs= and
extra_outputs= can also be given to pass in respective lists of Data() input and output that aren’t defined
as a command line argument to the Executable.

bwa.register(
 Parameter('--fastq', Data('/path/to/fastq.fq')),
 Parameter('--phred', '33'),
 Redirect(stream=Redirect.STDERR, dest='/logs/bwa.log'),
 extra_inputs=[Data('/path/to/indexed_genome.fa')],
 extra_outputs=[Data('/path/to/bam')]
)

The register() method returns an object wrapping the Executable node’s id, which can be passed to other
Software instances via the wait_on= keyword. If a Software is given other apps in its wait_on=, those
other apps will be included in the input dependencies, and so won’t start running until all app and data
dependencies are resolved.

first_app = first.register(
 Parameter('-a', '1')
)

second.register(
 Parameter('--output', Data('second.out').as_output())
)

third.register(
 Parameter('b', Data('second.out').as_input()),
 wait_for=[first_app]
)

In the above example, third won’t start running until both first is finished running and the output from
second called second.out is available.

Multiexecutor Pipelines

For many workflows, the resource requirements of its software won’t be uniform. One solution is to calculate the
largest resource need and allocate that to every software, but this leads to a large amount of unused resources. A
better solution is to define resource pools of varying size and assign software to an appropriate pool. This can be
done with the meta= keyword argument.

The developer can define a resource configuration with a call to Meta.define_executor() and then pass that name to the
meta= keyword argument:

from operon.components import Software
from operon.meta import Meta

Meta.define_executor(label='small_site', resources={
 'cpu': '2',
 'mem': '2G'
})

soft1 = Software('soft1')
soft1.register(
 Parameter('-a', '1'),
 Parameter('-b', '2'),
 meta={
 'executor': 'small_site' # Matches the above Meta definition
 }
)

CodeBlock operon.components.CodeBlock

A CodeBlock instance wraps a Python function that can be passed Data instances in much the same way as a
Software instance, and so can be integrated into the workflow graph. That is, a functions wrapped in a CodeBlock
will wait to execute until all its data dependencies are available.

The function wrapped by a CodeBlock instance can be defined as normal and registered with CodeBlock.register(),
where arguments and data dependencies can be defined.

def get_mapped_reads_from_flagstats(star_output_bam):
 import re
 with open(star_output_bam + '.flagstat') as flagstats:
 flagstats_contents = flagstats.read()
 target_line = re.search(r'(\d+) \+ \d+ mapped', flagstats_contents)
 if target_line is not None:
 with open('output.txt', 'w') as output_write:
 output_write.write(str(int(target_line.group(1))/2) + '\n')
CodeBlock.register(
 func=get_mapped_reads_from_flagstats,
 args=[],
 kwargs={'star_output_bam': star_output_bam},
 inputs=[Data(star_output_bam + '.flagstat').as_input()],
 outputs=[Data('output.txt').as_output()]
)

Note

When a function wrapped by a CodeBlock actually executes, the scope in which it was defined will be long gone.
That means that any variables or data structures declared in pipeline() can’t be counted on as available in
the body of the function. It also means that any modules the function needs to use must be explicitly imported
by the function, even if that module has already been imported by the pipeline document.

The return value of a CodeBlock is the same as that for a Software instance, and can be passed to other
Software or CodeBlocks via the wait_on= keyword argument.

Parameter operon.components.Parameter

A Parameter object represents a parameter key and value(s) passed into a Software instance.

from operon.components import Parameter

Parameter('-a', '1') # Becomes '-a 1'
Parameter('--type', 'gene', 'transcript') # Becomes '--type gene transcript'
Parameter('--output=/path/to/output') # Becomes '--output=/path/to/output'

When multiple Parameter instances are passed into a Software instance, order is preserved, which is important
for positional arguments.

Redirect operon.components.Redirect

A Redirect objects represents an output stream redirection. The keyword arguments stream= and dest= direct
which stream(s) to redirect and to where on the filesystem, respectively.

from operon.components import Redirect

bwa.register(
 Parameter('-a', '1000'),
 Redirect(stream=Redirect.STDOUT, dest='/path/to/bwa.log')
)

stream= can be one of the provided constants:

Redirect.STDOUT # >
Redirect.STDERR # 2>
Redirect.BOTH # &>

The order of Redirect objects passed to a Software instance, both in relation to each other and to other
Parameter objects, doesn’t matter. However, if more than two Redirect s are passed in, only the first two
will be considered.

Pipe operon.components.Pipe

A Pipe object represents piping the output of one executable into the input of another. The producing Software
instance is passed a Pipe object, which contains the receiving Software instance.

from operon.components import Pipe

software1.register(
 Parameter('-a', '1'),
 Pipe(software2.prep(
 Parameter('-b', '2'),
 Parameter('-c', '3')
))
)
Registers as: software1 -a 1 | software2 -b 2 -c3

Note

Since the whole executable call needs to be registered with Parsl as a single unit, register() is only called
on the outermost Software instances. Within a Pipe object, the receiving Software instance should
instead call prep(), which takes all the same parameters as register().

Pipeline Logging

All stream output from all Executables in the workflow graph that aren’t explicitly redirected to a file with a
Redirect is gathered and output to a single pipeline log file at the end of execution.

The location of this log file is defined by the user with the --logs-dir pipeline argument injected into every
pipeline. It may be of interest to the developer to also put any explicitly redirected log files into this
directory.

Developer Tutorial

This tutorial is meant to guide you, the pipeline developer, through all the necessary concepts to write an optimally
parallel and completely portable working pipeline in under 150 lines of code.

Since Operon was originally developed with bioinformatics in mind, we’re going to be developing a bioinformatics
pipeline and using bioinformatics concepts, but Operon certainly isn’t limited to any single field. The developer can
easily take the concepts talked about here and apply them to any set of software.

Let’s get started. This tutorial assumes you have Operon installed. First we need a plain Python file; create one
called tutorial.py in whatever editor you desire. The very first thing we need to do is create a class called
Pipeline which is a subclass of operon.components.ParslPipeline. Add the following to tutorial.py:

from operon.components import ParslPipeline

class Pipeline(ParslPipeline):
 def description(self):
 pass

 def dependencies(self):
 pass

 def conda(self):
 pass

 def arguments(self, parser):
 pass

 def configuration(self):
 pass

 def pipeline(self, pipeline_args, pipeline_config):
 pass

Pipelines are defined by overriding methods in ParslPipeline as above. We’ll fill in those methods now, going from
simple to more complex.

description(self)

The description(self) method needs only to return a string that is used to describe the pipeline on various help
screens. Fill it in like so:

def description(self):
 return 'A tutorial pipeline'

dependencies(self)

The dependencies(self) method needs to return a list, where each element is a string representation of a Python
packages acceptable to pip, which the user has the option to install at the time of pipeline installation.
Generally these packages should be ones that are used in the pipeline but aren’t a part of the standard library. In
this tutorial, we’re going to use PyVCF like so:

def dependencies(self):
 return ['pyvcf']

Note

When the user installs Python dependencies, they’re installed into the current Python environment, which may or
may not be the correct environment for eventual pipeline execution. There isn’t much the developer can do about
this, so don’t stress too much.

conda(self)

The conda(self method is used to define what external software the pipeline uses, and returns a dictionary with
two possible keys which are both optional:

{
 'packages': [
 # List of bioconda packages to install
],
 'channels': [
 # List of anaconda channels to use
]
}

Unless channels is provided, Operon will use bioconda [https://bioconda.github.io] to download packages. The
elements of the packages key should be operon.components.CondaPackage objects (add that import now). We will
be using the following:

def conda(self):
 return {
 'packages': [
 CondaPackage(tag='bwa', config_key='bwa'),
 CondaPackage(tag='macs2=2.1.1', config_key='macs2'),
 CondaPackage(tag='samtools=1.6', config_key='samtools'),
 CondaPackage(tag='picard=2.9.2', config_key='picard'),
 CondaPackage(tag='freebayes=1.1.0', config_key='freebayes')
]
 }

Note

The conda(self) method is not required but is a massive convenience to the user (which might also be you)
because it enables the user to not have to track down and manually install software to run the pipeline. Everything
defined here, which presumably encompasses all or most software used in the pipeline, can be automatically gathered
and injected into the pipeline’s configuration dictionary at the time of configuration.

arguments(self, parser)

For this simple tutoral, we’ll only take three basic arguments like so:

def arguments(self, parser):
 parser.add_argument('--read', help='Path to read in fastq format')
 parser.add_argument('--output-dir', help='Path to an output directory')
 parser.add_argument('--lib', help='Name of this sample library')

configuration(self)

Most of our configuration will be paths, which is a common practice, with a threading question thrown in. Notice in
bwa|reference and freebayes|reference_fasta the expanded leaf type is used so that we can get those as path
questions instead of plain text, since we are asking for a path.

def configuration(self):
 return {
 'bwa': {
 'path': 'Path to bwa',
 'reference': {
 'q_type': 'path',
 'message': 'Path to a reference genome prefix for bwa'
 },
 'threads': 'Number of threads to run bwa'
 },
 'macs2': {
 'path': 'Path to macs2'
 },
 'samtools': {
 'path': 'Path to samtools'
 },
 'picard': {
 'path': 'Path to picard'
 },
 'freebayes': {
 'path': 'Path to freebayes',
 'reference_fasta': {
 'q_type': 'path',
 'message': 'Full path to reference fasta'
 }
 }
 }

pipeline(self, pipeline_args, pipeline_config)

Now the main part of the pipeline building process. We’ve defined our periphery and can assume that the parameters
pipeline_args and pipeline_config have been populated and that all the software we’ve asked for is installed.

Generally the first step is to define operon.components.Software instances:

def pipeline(self, pipeline_args, pipeline_config):
 freebayes = Software('freebayes')
 bwa_mem = Software('bwa', subprogram='mem')
 macs2 = Software('macs2', subprogram='callpeak')
 picard_markduplicates = Software(
 name='picard_markduplicates',
 path=pipeline_config['picard']['path'],
 subprogram='MarkDuplicates'
)
 samtools_flagstat = Software(
 name='samtools_flagstat',
 path=pipeline_config['samtools']['path'],
 subprogram='flagstat'
)
 samtools_sort = Software(
 name='samtools_sort',
 path=pipeline_config['samtools']['path'],
 subprogram='sort'
)

For freebayes the instantiation is very simple: the default path resolution is fine, and there isn’t a subprogram
to call. bwa mem and macs2 callpeak are slightly more involved, but only by adding a subprogram= keyword
argument.

For picard and samtools, we’re giving names that don’t have a match in the configuration dictionary. That means
the default path resoluation won’t work, so we need to give it paths explicitly with the path= keyword argument.

Next some very simple pipeline setup, just creating the output directory where the user defined output to go. There may
be more setup in more complicated pipelines. Add:

Set up output directory
os.makedirs(pipeline_args['output_dir'], exist_ok=True)

Now we can start constructing our pipeline workflow. Modify the import statments at the top of the file to:

import os
from operon.components import ParslPipeline, CondaPackage, Software, Parameter, Redirect, Data, CodeBlock

We’ll need all those components eventually.

The general idea the developer should take when constructing the pipeline workflow is to think of software as
stationary steps and data as elements flowing through those steps. Each stationary step has data coming in and data
going out. With that mental model, we can construct the following workflow:

First we will run the software bwa whose output will flow into samtools sort; this will be sequential so
there’s no parallelization involved quite yet. The output of samtools sort will flow into both samtools flagstat
and picard markduplicates, forming our first two-way branch. These two program will run in parallel the moment that
samtools sort produces its output. From there, the output of picard markduplicates flows as input into both
the freebayes variant caller and the macs2 peak caller, forming another two-way branch. Finally, the output of
freebayes will flow as input into a Python code block which uses PyVCF. The overall workflow will terminate
when all leaves have completed; in this case, samtools flagstat, macs2, and the Python code block.

Let’s dive in. The first software we need to insert into the workflow is bwa:

alignment_sam_filepath = os.path.join(pipeline_args['output_dir'], pipeline_args['lib'] + '.sam')
bwa_mem.register(
 Parameter('-t', pipeline_config['bwa']['threads']),
 Parameter(pipeline_config['bwa']['reference']),
 Parameter(Data(pipeline_args['read']).as_input()),
 Redirect(stream='>', dest=Data(alignment_sam_filepath).as_output(tmp=True))
)

There’s a lot going on here. First we define a filepath to send out alignment output from bwa. Then we call the
.register() method of bwa, which signals to Operon that we want to insert bwa into the workflow as a
stationary step; the input data and output data flow is defined in the arguments to .register().

The first parameter is simple enough, just passing a -t in with the number of threads coming from our pipeline
configuration. The second parameter is a positional argument pointing to the reference genome we wish to use for
this alignment.

The third argument is importantly different. It’s another positional argument mean to tell bwa where to find its
input fastq file, but the path is wrapped in a call to a Data object. Using a Data object is how Operon knows
which data/files on the filesystem should be considered as part of the workflow; failure to specify input or output
paths inside Data objects will cause Operon to miss them and may result in workflow programs running before they
have all their inputs! Notice also the .as_input() method is called on the Data object, which tells Operon not
only is this path important, but it should be treated as input data into bwa.

Finally, the Redirect object (bwa send its output to stdout) sends the stdout stream to a filepath,
again wrapped in a Data object and marked as output. The tmp=True keyword argument tell Operon to delete
this file after the whole pipeline is finished, since we’re not too interested in keeping that file around in our
final results.

sorted_sam_filepath = os.path.join(pipeline_args['output_dir'], pipeline_args['lib'] + '.sorted.sam')
samtools_sort.register(
 Parameter('-o', Data(sorted_sam_filepath).as_output()),
 Parameter(Data(alignment_sam_filepath).as_input())
)

The next step in the workflow is samtools sort, which takes the output from bwa as input and produces some
output of its own. Notice again the important filepaths are wrapped in Data objects and given a specification as
input or output.

Note

Although there is certainly a conceptual link between the output from bwa and the input here,
that link does not need to be explicitly defined. As long as the same filepath is used, Operon will automatically
recognize and link together input and output data flows between bwa and samtools sort.

After samtools sort, we’re at our first intersection. It doesn’t matter in which order we define the next steps, so
add something similar to:

samtools_flagstat.register(
 Parameter(Data(sorted_sam_filepath).as_input()),
 Redirect(stream='>', dest=sorted_sam_filepath + '.flagstat')
)

dup_sorted_sam_filepath = os.path.join(pipeline_args['output_dir'], pipeline_args['lib'] + '.dup.sorted.sam')
picard_markduplicates.register(
 Parameter('I={}'.format(sorted_sam_filepath)),
 Parameter('O={}'.format(dup_sorted_sam_filepath)),
 Parameter('M={}'.format(os.path.join(pipeline_args['logs_dir'], 'marked_dup_metrics.txt'))),
 extra_inputs=[Data(sorted_sam_filepath)],
 extra_outputs=[Data(dup_sorted_sam_filepath)]
)

There are a couple things to notice here. samtools flagstat takes input in a Data object but its output is a
plain string. This is because the output of samtools flagstat isn’t used as an input into any other program, so
there’s no need to treat it as a special file.

Notice also that both samtools flagstat and picard markduplicates use the same filepath as input; in fact that’s
the point! Operon (really Parsl) will recognize that and make a parallel fork here, running each program at the same
time. As the developer, you didn’t have to explicitly say to fork here, it is just what the workflow calls for. This is
what we mean by the workflow being automatically and optimally parallel.

Finally, there are some funny keyword arguments to picard_markduplicates.register(). This is because of how the
parameters are passed to picard markduplicates: it wants the form I=/some/path, which mostly easily achieved
with a format string, as we’ve done. But if we were to pass in like this:

Parameter('I={}'.format(Data(sorted_sam_filepath).as_input()))

that wouldn’t work. Why not? It’s how we’ve passed in special input data in the other programs!

When the Data object is coerced into a string, it just becomes its path as a plain string. If a Data object is
used in a format string’s .format() method, it will become it string representation before Operon can ever recognize
it. To mitigate that, we can explicitly tell Operon what the special input and output Data items are in the
extra_inputs= and extra_outputs= keyword arguments, respectively. Notice in those keyword arguments we don’t
need to call .as_input() or .as_output() because Operon can determine which is which from the keyword.

Now we come to our final two-way fork:

macs2_output_dir = os.path.join(pipeline_args['output_dir'], 'macs2')
os.makedirs(macs2_output_dir, exist_ok=True)
macs2.register(
 Parameter('--treatment', Data(dup_sorted_sam_filepath).as_input()),
 Parameter('--name', pipeline_args['lib']),
 Parameter('--outdir', macs2_output_dir),
 Parameter('--call-summits'),
 Parameter('--shift', '100')
)

vcf_output_path = os.path.join(pipeline_args['output_dir'], pipeline_args['lib'] + '.vcf')
freebayes.register(
 Parameter('--fasta-reference', pipeline_config['freebayes']['reference_fasta']),
 Parameter(Data(dup_sorted_sam_filepath).as_input()),
 Redirect(stream='>', dest=Data(vcf_output_path).as_output())
)

There isn’t much going on here that we haven’t already discussed, so we won’t go into detail. Both macs2 and
freebayes use the output of picard markduplicates, so they will run once the output of picard markduplicates
is available.

Finally, the output of freebayes is used as input into a Python codeblock:

def get_first_five_positions(vcf_filepath, output_filepath):
 import vcf
 vcf_reader = vcf.Reader(open(vcf_filepath))
 with open(output_filepath, 'w') as output_file:
 for record in vcf_reader[:5]:
 output_file.write(record.POS + '\n')
CodeBlock.register(
 func=get_first_five_positions,
 kwargs={
 'vcf_filepath': vcf_output_path,
 'output_filepath': os.path.join(pipeline_args['output_dir'], 'first_five.txt')
 },
 inputs=[Data(vcf_output_path)]
)

CodeBlocks can be thought of as very similar to Software instances with the same data flow model.

Running the Tutorial Pipeline

The pipeline in complete! If you with to attempt to run it, simply install it into Operon, configure it (you might need
to create a reference genome index), and run it with the small data bundle linked below.

Download the tutorial data bundle [https://drive.google.com/uc?export=download&id=1isOgCOuJ8U8dloWzeYJKtX3CA3sW7wgB].

An awkward step in the Operon installation process is the necessity of a reference genome index. To generate one we
need a reference genome fasta file and then to run bwa index over it; this mean that when we first configure our
pipeline when it asks for the bwa reference genome prefix we won’t have it, but we can come back and fill it in
later.

$ /path/to/bwa index /path/to/downloaded/dm6.fa.gz

bwa dumps its index in the same folder as the genome fasta, so the reference prefix is just the path to the
reference fasta.

Use the inluded Drosophila melanogaster DNA fastq as your --read input.

freebayes can’t deal with a compressed reference genome fasta, so uncompress it before passing the path in the
pipeline config.

Operon API

Changelog

v0.1.8 (released 29 August 2018)

	Moved to Parsl 6.0+ exclusively, now only accepting class based Parsl configurations

	Integrated TinyDB for the framework state DB

	Tab autocompleter now automatically updates itself if needed

	Relaxed requirements on the name of the pipeline class, though Pipeline is still recommended

	Removed ‘append’ style redirects (>>) because Parsl doesn’t support them at this time

	Stderr redirects are now properly respected on the lefthand side of a Pipe

	Supporting information added to run logs such as using the run name in the filename, logging the original command
used to start the run, etc

v0.1.5 (released 7 June 2018)

	Software execution itself can now be considered as input in the workflow graph

	Default dfk execution set down to 2 Python threads

	Fixed future state reporting

	Operon’s temporary directory is now set to the same place as --logs-dir in hopes that this directory
will exist on worker nodes which may not have access to the same filesystem as the head node

	Data('') now returns an empty string

	Added a batch-run execution mode, which allows for multiple concurrent runs of a single pipeline, each
with different input and output, using the same resources pool

	Added support for multiple resources pools

	Added unit tests

v0.1.2 (released 21 Feb 2018)

	Better error messages when the pipeline developer doesn’t override a method properly

	Better error messages when the pipeline configuration is malformed

	Added parsl_config key to all pipeline configurations by default

	Added > and 2> paths to the string representation of a Software’s command

	Removed captured log output from screen; it still goes to the log file

	Added tags marking start time, end time, and duration of pipeline run to the log output

	Start and end time for each Software or CodeBlock added to log output

	Added “currently running” log entry, whenever the set of running programs changes

	Updated output for operon list

	Updated output for operon show

	When a conda environment already exists, added ability to reinstall

	Added operon uninstall to remove pipelines

	Refactored cleanup so that it always runs, even if some programs fail during the run

v0.1.1 (released Jan 2018)

	If the path= argument isn’t provided to a Software instance, the path will attempt to populate from
pipeline_config[software_name]['path']

	Added subprogram= argument to Software

	Made tab completer program silent if it ever fails because it doesn’t exist

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down.png

_static/down-pressed.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Operon Documentation

 		
 Getting Started

 		
 Using Operon

 		
 Initialization

 		
 Pipeline Installation

 		
 Pipeline Configuration

 		
 Seeing Pipeline States

 		
 Run a Pipeline

 		
 Parsl Configuration

 		
 Run a Pipeline in Batch

 		
 Input Matrix

 		
 Command Line Help

 		
 Building Pipelines

 		
 Dependency Workflow Concepts

 		
 Pipeline Meta Definitions

 		
 Description

 		
 Dependencies

 		
 Conda/Bioconda

 		
 Pipeline Configuration

 		
 Pipeline Arguments

 		
 Pipeline Logic

 		
 Data operon.components.Data

 		
 Meta operon.meta.Meta

 		
 Software operon.components.Software

 		
 CodeBlock operon.components.CodeBlock

 		
 Parameter operon.components.Parameter

 		
 Redirect operon.components.Redirect

 		
 Pipe operon.components.Pipe

 		
 Pipeline Logging

 		
 Developer Tutorial

 		
 description(self)

 		
 dependencies(self)

 		
 conda(self)

 		
 arguments(self, parser)

 		
 configuration(self)

 		
 pipeline(self, pipeline_args, pipeline_config)

 		
 Running the Tutorial Pipeline

 		
 Operon API

 		
 Changelog

 		
 v0.1.8 (released 29 August 2018)

 		
 v0.1.5 (released 7 June 2018)

 		
 v0.1.2 (released 21 Feb 2018)

 		
 v0.1.1 (released Jan 2018)

_static/up-pressed.png

_static/operon_logo_gradient.png

_static/plus.png

_static/up.png

